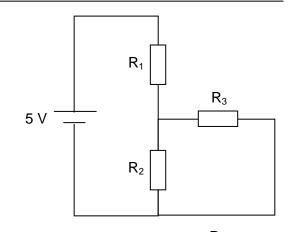

ACTIVIDADES DE REPASO DE CÁLCULO DE MAGNITUDES ELÉCTRICAS

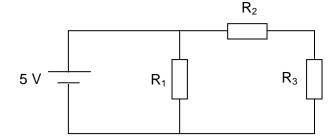
B.1.- Calcular la intensidad y la tensión en la pila y en cada una de las resistencias del siguiente circuito. Calcular la resistencia equivalente. Datos: $V_G = 5$ V, $R_1 = 1$ K, $R_2 = 2$ K2, $R_3 = 4$ K7.

Solución: $I_G = I_{R1} = I_{R2} = I_{R3} = 0.633$ mA, $V_{R1} = 0.63$ V, $V_{R2} = 1.4$ V, $V_{R3} = 2.97$ V, $R_{EQ} = 7.9$ K.

- B.2.- ¿Cuáles de las siguientes afirmaciones son verdaderas y cuáles falsas, referidas a un circuito de resistencias en serie?
 - a) La tensión en cada resistencia es proporcional a su valor.
 - b) La intensidad que circula por la pila es igual a la suma de las intensidades que circulan por cada resistencia.
 - c) Si reducimos la tensión de la fuente de alimentación, las tensiones en las resistencias disminuyen en la misma proporción pero la intensidad no varía.
 - d) La suma de las tensiones de las resistencias es igual a la tensión de la fuente.
- B.3.- Calcular la intensidad y la tensión en la pila y en cada una de las resistencias del siguiente circuito. Calcular la resistencia equivalente. Datos: VG = 5 V, R1 = 1K, R2 = 2K2, R3 = 4K7.

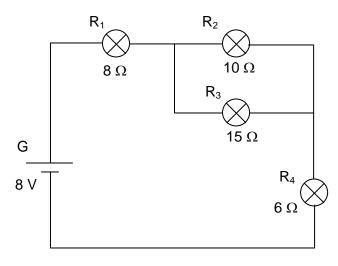

Solución: $V_G = V_{R1} = V_{R2} = V_{R3} = 5 \text{ V}$, $I_G = 8,34 \text{ mA}$, $I_{R1} = 5 \text{ mA}$, $I_{R2} = 2,27 \text{ mA}$, $I_{R3} = 1,06 \text{ mA}$, $R_{EQ} = 0,6 \text{ K}$.

- B.4.- ¿Cuáles de las siguientes afirmaciones son verdaderas y cuáles falsas, referidas a un circuito de resistencias en paralelo?
 - a) La tensión en todas las resistencia es la misma que la tensión de la fuente, aunque modifiquemos el valor de las resistencias.
 - b) Si modificamos el valor de una resistencia se modifica la tensión o la intensidad de las otras.
 - c) La intensidad que circula por la pila es igual a la suma de las intensidades que circulan por cada resistencia.


IES Bellavista 1/2

B.5.- Calcular la intensidad y la tensión en la pila y en cada una de las resistencias del siguiente circuito. Calcular la resistencia equivalente.
Datos: VG = 5 V, R1 = 1K, R2 = 2K2, R3 = 4K7.

Solución: $V_{R1} = 2 \text{ V}$, $V_{R2} = V_{R3} = 3 \text{ V}$, $I_G = 2 \text{ mA}$, $I_{R1} = 2 \text{ mA}$, $I_{R2} = 1,36 \text{ mA}$, $I_{R3} = 0,64 \text{ mA}$. $R_{EQ} = 2,5 \text{ K}$.



B.6.- Calcular la intensidad y la tensión en la pila y en cada una de las resistencias del siguiente circuito. Calcular la resistencia equivalente. Datos: VG = 5 V, R1 = 1K, R2 = 2K2, R3 = 4K7.

Solución: V_{R1} = 5 V, V_{R2} = 1,59 V V_{R3} = 3,41 V, I_{G} = 5,72 mA, I_{R1} = 5 mA, I_{R2} = I_{R3} = 0,72 mA. I_{R2} = 874 I_{R3} = 0,72 mA.

B.7.- Realiza los cálculos necesarios para rellenar la tabla adjunta correspondiente al circuito de la figura. Indica el orden en el que lucirán las bombillas de más a menos, es decir, primero la que más luz da, después la siguiente, y así hasta la que menos luz da. Es necesario que hagas los cálculos, no vale sólo con rellenar la tabla.

Elemento	R (Ω)	V (V)	I (A)	P (W)
Pila G				
R ₁				
R ₂				
R ₃				
R ₄				

Solución:

Elemento	R (Ω)	V (V)	I (A)	P (W)
Pila G	\times	8	0,4	3,2
R ₁	8	3,2	0,4	1,28
R ₂	10	2,4	0,24	0,576
R_3	15	2,4	0,16	0,384
R ₄	6	2,4	0,4	0,96

Solución: El orden de más a menos luminosidad de las lámparas es: R₁, R₄, R₂, R₃.

IES Bellavista 2/2